RD-A188 339  COMERENT STRUCTURE-REFLECTWE TURBULENT VISCOUS FLON
MODEL INGCU) HOKENSON CO LO J HOKENSON
@7 SEP 87 HOKE-87-RAF-81 RFOSR TR 87 1660

UNCLASSIFIED F496208-85-(-0873 F/G 28/4







OTC FILE COPY - o o \

THE HokENSON COMPANY

N
® 8 AFOSR-TR- 57- i 660V
00 FINAL REPQORT
o0
F
] $ CONTRACT NO. F49620-85-C-0075
(o)
<

COHERENT STRUCTURE-REFLECTIVE TURBULENT VISCOUS FLOW MODELING

‘ . . L]
DTIC
EL
PREPARED FOR: NOV 2 4 1987

Dr. James M. McMichael UQD
Program Manager ‘
PY Aerospace Sciences )
AFOSR/NA cortatsal censatus el
Bldg. 410 pateas A TIIIULL
whiis®

© Bolling AFB
Washington, D.C. 20332-6448

° W__A
Approved for public reloasey
. Distribution .Unlimited

SEPTEMBER 1987

87 11 14 091

CMIEF EXECUTIVE 0840 3. TREMAINE AVE, LOS ANGELES, CA. 90008 * TEL. (213) 936-3743

o @ ke P Srpypp— L e =



6c ADDRESS (Grty, State. and 2iP Code)
840 S. Tremaine Ave.

Lcs Angeles, CA 90005

7 +33 %l’ ond 21 Code)
mg AFB, 20332

8a NAME OF FUNDING /SPONSORING
ORGANIZATION

AFOSR /NA

8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(f sppicable)
y i F49620-85-C-0075

8c. ADDRESS (Crry, State, ang 2IP Cogde)

10 _SOURCE OF FUNDING NUMBE®RS

. PROGRAM
Buildmg Y0 1. evyg BTN wo o o XCTEsSION NO.
Rollmg AFB, D& 20332- Croe | 2307 42
11 TITLE (inciude Security Classification)
Coherent Structure Reflective Turbulent Viscous Flow Modeling (UNCLASSIFIED)
12 PERSONAL AUTHOR(S) Dr. Gustave J. HOKenson
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Vear, Month, Day) I'S PAGE COUNT ﬂ
Final FROM 10 7 87-09-07 92

16. SUPPLEMENTARY NOTATION

17 COsSAT: CODES

FIELD GROLP SUB-GROUP

— 1 iT—

18. SUBJECT TERWMS (Contmue on reverse if necessary and identify by black number)

Fluid Dynamics, Turbulence, Coherent structure




Section
Table of Contents.
Executive Summary .

Discussion.

Table of Contents

1. Advection Velocities.

1. Flow Angle Structure.

A. Background. . .

8. Development. .
C. Analysis. . . .

1Il. Instability. . . . .

Results and Conclusions. . . .

References. . . « « « o+ + =

Appendices

A. Publications.

B. Draft of Future Publication.
C. Instability Computations Inputs and Outputs. . . . . « . . Cl

.l-

Page
. . o o
.1
... .3
C .3
. 15

Accesion for AI
NTIS CRA&I

DTIC TA8 0
Unannou-ced a
Justi.‘icatio:yu___, .

By

[ART. PP TP

Di:}"ib:mo::[
———

Avaitaziity Coces

Avail a3 or |

Drst Special

A |




Executive Summary

The research reported upon here addresses several elements of the structure of nearly
parallel turbulent shear flow. Both boundary and free shear layer flows in constant as

well as variable pressure fields are addressed. With respect to variable pressure condi-
tions, unsteady as well as steady flows are embraced by the approaches. As a serendipi-
tous consequence, many of the results also apply to flowfield separation in time-dependent
fiow, a topic of current interest to AFOSR. Specifically, new (and soon to be published)

aspects of:

e Turbulent structure advection velocities,
e Turbulent boundary layer "instability", and

e Turbulent shear flow angular structure

have been exposed. Due to the inherent "try and fail" nature of basic research, the
approximately one man-year effort invested so far has not concluded the study of any
of these three areas, although four publications have resulted from the investigation.

The work has, however, established the feasibility of further inquiry benefiting:

e Basic turbulence physics,
® LES and turbulence modeling, and
e Flowfield separation physics in steady and unsteady flow.

In particular, a coordinated experimental and computational study of those turbulent

shear flow detalls which have been exposed would, in fact, serve the dual goals of
understanding turbulence structure as well as separation physics.




As a direct result of the work reported here, an SBIR study of turbulence in hypersonic
flow was initiated for AFOSR, the fruits of which now support an advanced R&D effort

at Eglin AFB.




Discussion

The focus of the research reported upon here is the structure of nearly parallel turbu-
lent shear flows in constant and variable pressure fields. Both wall-bounded and free
shear layers were studied, as appropriate, and the variable pressure results apply to
unsteady as well as steady flows. In addition, many of the results bear directly upon the
generalized separation problem, addressed here insofar as it is relevant to turbulent
structure details. This is reminiscent of Prandtl's view that turbulence is sustained by

local separations.

The work discussed here is scheduled to be submitted for publication during the next
few months. In addition, various other tangential papers which have resulted from this

work have been published and are inciuded in Appendix A.

In reporting upon the achievements of this research, it is easy to present them linearly

in an orderly and coherent form. In actuality, the prgced'..;tes involved where chaotic and
not serial but strongly linked parallel efforts that took form only after considerable stum-
bling and "probing for soft spots" in the mathematics. Therefore, with this admission in
the forefront, the discussion begins arbitrarily with a report on work carried out relative
to the propagation of large scale structures in turbulent shear flows. The only rationale

for beginning with this is its simplicity and possible surprisingly large future impact.

1. Advection velocities

The following generalized evolution equation:

Feu Ermac (1)
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arises in several applications relevant to this work:

1. As an integral boundary layer thickness equation,

2. As the equation for an instability envelope in a two-time
perturbation analysis,

3. As the governing equation for the flow angle, and

4. As a pdf transport equation.

The second and third source of Eg. (1) shall be revisited in connection with the next
aspects of the work to be reported. No advantage has yet been taken of the congruence

to the third area.

For our purposes, the (two-dimensional or spanwise-averaged three-dimensional) time-
dependent eguations of motion may be integrated across the flow® to provide Eg. (1),

wherein the following definitions apply:

L £ O, the momentum thickness,

ch U/H, the freestream velocity divided by the shape factor,
P = generalized streamwise gradients term, and

G 2 Cp/2 4 (v /UXI - u W), the skin friction coefficient

plus vectdfed wall ass transfer terms, times Ue:

Of interest, initially, was simply how fast large scale structures propagate. Clearly,
from Eq. (1), a characteristic speed equal to H™! times the local freestream velocity
appears. For constant pressure turbulent boundary layers, H = 1.4 and, therefore, H™ ! =
0.7, consistent with experimental evidence regarding certain of the largest scale struc-
tures. For our purposes, therefore, H is now defined by the expression:




= u/uc , (2)

whereas, it is computed from §*/0, the ratio of displacement to momentum thicknesses.
with respect to interpreting the equations, their solutions and H, physically, this orienta-

tion is more useful than discussing the §*/© scale ratio.

In order to solve Eq. (1) for the evolution of a specific burst-like structure in the shear
flow, P must be computed, ostensibly from the terms in its defining equation. For this
study, however, an inverse approach was taken in that P itself was specified parame-
trically. Subsequently, the definition for P was used to solve for the implied Uc and H
distribution from the eguation:

3 , o 2 9 ) _

{§t + U gx}lnH + {5t + Ucné'x“'n U, =P . (3)

Of prime importance here is the appearance of two additional characteristic speeds of

propagation,

US'J = (Hs 2)/24 , and
(4)

For a constant pressure turbulent boundary layer with H = 1.4, both Uc' and Uc" are
considerably greater than the freestream velocity, consistent with experimental obser-
vations. In addition, several aspects of these functional forms for the three characteris-
tic speeds are clarified by the following plot:

«5.
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Over the range of data encountered experimentally, both Uc and Uc" are always less
than and greater than freestream, respectively, for both laminar and turbulent flows.

For laminar flow, U is always less than freestream. However, for turbulent flow U '

transitions from greater than freestream to less then freestream velocity at H=2. It is

the hypothesis of this work, therefore, that a significant structural change in the flow
relative to the propagation of large scale structures occurs at this point. Clearly, below
a value of H=2.0, the freestream is not able to feed-forward information on H (carried
by Uc'), as can occur above H=2.0. In addition, the broad band of experimental + values
that characterize turbulent separation (~1.8 + 2.3) may merely refiect wave dynamics
peculiar to the particular pressure distributions whereas the critical value of H is indeed
2.0.




with the aid of semi-empirical H and Cf laws?, a P function which linearly ramped up
in time to a Gaussian spatial distribution was input to a numerical solution of £gs. (1)
and (3). Two peak magnitudes of P were identified which forced the peak H to be in
the range of 2.0 and somewhat smaller, respectively. wWhen the flowfield solution attain-
ed equilibrium, a disturbance was injected into the flow in the form of pulsed and vec-
tored mass transfer. For the smaller of the two peak P and, therefore, H levels, the
disturbance was not catastrophic. However, at the larger peak P, the disturbance caused
the shape factor to exceed 2.0 and grow exponentially, as shown in the accompanying
Figs. 1&2, a-c. These results also point out the effect of this inverse approach wherein
the local external flow responds to the presence of the 'bulge' in the boundary layer.

This effect is critical to exposing the importance of H=2.0.

In conclusion, to the extent possible with the time and funds available, the importance

of UC' and its behavior as H changes in space and time due to steady and non-steady

pressure gradients has been established.




Figs. 1:

Figs. 2:

Figs. 1 & 2, a-c.

Damped Response of TBL to Pulsed Blowing. H
and VW/U = 0.003.

undisturbed™ 19!
la. Momentum Thickness
1b. Freestream Velocity

lc. Shape Factor

Undamped Response of TBL to Pulsed Blowing. H

a= 1.97
and VW/U = 0.003.

undisturbe

2a. Momentum Thickness
2b. Freestream Velocity

2c. Shape Factor
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Il. _Flow Angle Structure

A. Background

Previous discussion relative to pulsed and vectored wall mass transfer indicated how
this research first stumbled onto the importance of flow angles relative to vorticity

transport. In particular, the vectored wall mass transfer term:

(1 -y /W) (v, (5)

used to generate the pulsed disturbance discussed in the part I. of this section, was stu-

died in the first paper included in Appendix A. written in terms of the variables:

a = Vw/ Uy and
(6)
m = (u,? + vw’)*/u ,
the vectored mass transfer term becomes:
{mt-m(1sah)?) {-as(1sa®)} . (7)
Equation (7) exhibits the following extrema:
u,/V = 1/2, for a given a, and . .
(8)

v, /U= (12(1 » am’)’)/a, for a given m,




Subsequently, the research led to the second paper in Appendix A, wherein the details

of vectored and pulsed mass transfer on the boundary conditions are presented. The

essence of that work, as it relates to the angular structure of turbulent shear flows,

may be presented in terms of the two-dimensional incompressible Navier-Stokes equations:

u, + e (uw) = - Hx + va and
(9)
Vi - 1 (uw) = - Hy - Ve, ,
where: 0%z v/u )
w = vorticity and
H = p/o + (u24v?)/2 .

Note that, evaluated at the mass transfer surface, these equations prove that the vorti-
city flux varies even in constant pressure flows if the mass transfer is vectored, pulsed

or exhibits spatial variation.

By using the condition of flowfield incompressibility, Egs. (9) may be cross-differentiated
to provide the following expression for H:

V' = w? + u (wy - ewx) . (10)

Inasmuch as streamlines (V) are defined by: dy=udy-vdx, along ¥ = constant lines, dy/dx =
©. Therefore, the H field responds to gradients in vorticity normal to the streamiines.

*Note that © was also used to represent the momentum thickness in part 1.




By manipulating Egs. (9), the following expression ensues:
O, - w = - (Hy - OH )/u - v o+ ewy)/u , (11)

where (1+0?%) has been approximated by 1 in the coefficient of w for weakly non-paral-

lel flows.

The interpretation of Eq. (11) is that G)t is a measure of, but lags or leads the vorticity

according to cross-streamline gradients in H and along-streamline gradients in w.

with this motivation, the basic angular structure of turbulent shear flows is being analy-
zed to expose the physics and aid the modeling. As this report is being written, a fully
three-dimensional solution of a nominally two-dimensional free shear layer is being com-

pleted, which forms the basis for a future investigation and publication.

.17.




B. Development

For the purposes of exposition, consider initially a two-dimensional flowfield (u,v;x,y)

and examine the behavior of the angular tangent variable :

0 = v/u . (12)

By applying traditional Reynolds decomposition, it may be shown that:

8-e=-8ud/v ,

(13)
where: © z v/u
In addition:
57u' = (u'v' - Bu)y /0 . (14)
By combining Egs. 13 & 14, the following expression ensues:
8-0=R.8u™/m) , (15)

u'v'/u?

where: R

herein referred to as the local Reynolds stress correlation coefficient.




For small & and turbulence intensity, Eq. (15) may be approximated by:

t§-0:=R |, (16)

which has the obvious interpretation that the difference between the mean flow angle
and the angle of the mean flow is equal to the local Reynolds stress correlation coeffi-
cient. In addition, even on lines of symmetry when © = 0, © may be non-zero and is

equal to R, with the aforementioned restrictions.

In order to form various correlations, neglecting higher order fluctuation products, the

fluctuating angle may be written:

e' = 6(v'/v) - B(u'/u) + H.O.T. | , (17)

where: H.0.T. = (B'u¥ - 6'u')/u

In the four quadrant decomposition® of coherent structure data, the second and fourth
guadrant contribute most to the net production of Reynolds stresses, associated with
the ejection and sweep. Clearly from Eq. (17), ©' is largest when v' and u' are of the
opposite sign, as in the second and fourth quadrant. However, v' and u' are weighted
by © and &, which differ by R. Therefore, the behavior of B and ©' is significant and, in
conjunction with conventional approaches to obtain v and u, and thus 8, may be s more

effective way of exposing, e.g., the Reynoids stress structure.




'. C. Analysis

As shown in Appendix B, the full N-S equations may be written in terms of angular

J. variables in the form:
N3t © = (G - OF)/u and
o
® where: (18)
N,, = 3/3t + u (3/0x + ©3/3y + 38/9z2) ,

6,2 = v/u, w/u ’

mn
9]
I
11}
]
Y
+
<
<]
~
[
1
]
[
N
W
']
o
Q

P = p/p.

Consider, for simplicity, an essentially inviscid, two-dimensional flow such that Eqg. (18)

and the continuity equation become:

et + (ue)x + (uB’)y = OPx/u and

(19)

Ux + (Ue)y = 0 .




|®

|®

written in streamfunction (x,y) variables, Eq. (15) becomes:
Gt + UGX = 0 (Px - uGPw)/u . (20)

By expanding © in a series, the first order weakly non-paraliel solution obeys the follow-

ing equation:

Qt + qu = 0 Px/u + H.O.T. . (21)

Conveniently, this is the precise form of the momentum thickness evolution equation
studied in part 1. of this section. we have also exposed a new parameter, Px/u, to inves-
tigate such that the understanding of, and ability to model coherent structure is re-
inforced. As this report is being written, a fully three-dimensional N-S solution of a
nominally two-dimensional planar mixing layer, such as that shown in Figs. 3, is being
completed for fluture publication, along with a refined version of Appendix B. The fluc-
tuation data obtained shall be used to evaluate the angular fluctuations and various

correlations thereof with respect to turbulent burst/sweep physics and transport modeling.

-21-




Figs. 3. Typical Simulations of a Free Shear Layer
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[iI. Instability

The pioneering work of Landah!® in weakly non-linear instability (wave-iike) representa-
tions of turbulence forms the basis for the computations of coherent structure fluctua-
tions which have been carried out. A multiple-element gecomposition®’® of the governing
equations was used in which temporally coherent and two distinct spatial scales of tem-
porally incoherent fluctuations are 'superposed' in order to constitute the solution. By
judicious use of appropriate time, phase and spatial averaging, governing equations for

each element may be derived, as shown in Fig. 4.

-23.




Fig. 4.

A FOUR-ELEMENT DECOMPOSITION OF THE NAVIER-STOKES EQUATIONS

2
o 3, 10, . %Y
Yy T T e VIR
3 i h R |
3y,
=0
X,

i

Decompose the flow into four components by:
visui+Ui+u;+u;

paP+F+p +p ,

where: Uj, P = time mean flow
0., F = coherent component
U;. P' = {incoherent component, large scale
u;. p' = incoherent component, small scale

24«




Mean Flow:

U, 33y
i, _1%9 i .2
Ui GXJ- I X, MR T ax (UU+ Rij * r'IJ)
i
_aj_i.: 0
ax1

Coherent Flow:

, af U 2,

i i i, .1 i d ~
¢ U:l '573."' Uj —‘axj - 3—‘axi tv a::xje-.mj - axj (R'ij + '13)
& = 0
B,

Incoherent Large Scale Flow:

F LTH
1 [}
= (Y *U)r*“nx—(“i*")"-&-*"sqrj w; )
w'
Uy
— % )
B,

Incoherent Small Scale Flow

CF o o,
w+(u + 05+ 0)) g 1e u'&"—j-(u1+(! ’ui)"%%*"'ﬁﬁ%

'
=0
=y




where —_— = time average
< > = phase average

{ '} = large scale average

Define fluid stresses:

=u;93 , and

wde
Cude
[

ryg = U345 .

Further, decompose these streses as:
a R '
Rij = Ryg * Ryy * Ryy

rig= iyt ?13 + .'f;j .
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Of primary interest in the research reported here is the large-scale temporally incohe-
rent fluctuating element, generally referred to as (spatially) conerent turbulent structure.
The small-scale temporally incoherent element enters into and affects the coherent
structure solution, however. Rather than solving the small-scale equations, the terms in
the large-scale equations resulting therefrom are modeled utilizing classical gradient

transport theory.”?%"?

The virtue of retaining temporally coherent elements in the decomposition is that un-
steady flow effects on the turbulent structure may be readily incorporated.® In parti-
cular, the effect of various time-dependent freestream velocity fields on the turbulent
transport, insofar as it affects, for example, flowfield separation, could be addressed

by this formulation.

The conventional wisdom regarding the constant pressure mean turbulent flow velocity
profile is that it is stable. This is clear form the work of Landahl in which fluctuation
correlations arising from non-linear terms are treated as a known non-homogeneous func-
tion. The resultant Orr-Sommerfeld problem generates no unstable modes. In the present
work, the temporally incoherent small-scale processes in the large-scale equations are
considered to be (at least partially) functions of the large-scale solution. The modeling
employed is gradient transport with a spatially-variable and non-equilibrium’® (smali-

scale eddy viscosity) coefficient, €. The non-equilibrium is specified to be of the form:

Te De/Dt + € = eeq . (22)
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1
®
® The obiective of this aspect of the work was to review the stabllity characteristics of
the mean turbulent velocity profile with a spatially-variable and non-equilibrium small-
scale process mode! anc te structure the sclution for spatially- and temporally-variable
® pressure fields. The transformed weakly non-linear vorticity equations are shown in Fig.
5. Note also the possibility of resonance between the vertical vorticity and vertical
velocity.




Fig. 5.

FOURIER AND LAPLACE TRANSFORMED 3-D VORTICITY EQUATIONS
LINEARIZED LARGE SCALE MOTIONS

{('J.c) o L [res e (02k2) & (th)]}al' -{(ou) + I (0e)(202-k22}uy

- £ {oew - o0},

¢ L
{(‘J-c) + 2 lrete 2 0242) o (o:)n]}&, - - £ (o),

{('u'.c) + .1. [(Re~1+ €)(D2-k2) + (o!:))}&, . {(oi.‘) +.} (oc)(znz-uz)}ﬁl
+ {(0e10 - (2020},

. (- 1% (D'J)n]};z
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Tne mean velocity fields presented in Appendix C were taken from NBS data due to

Klebanoff and a wide range of values for:

B = real span-wise wave number,

w = real frequency,

Te= non-equilibrium time constant, and
Cmag = peak value of e/v ,

were investigated. (Note that non-dimensionalization with respect to 6* and U is assumed
throughout). The eddy viscosity distributions which were utilized are also shown in Appen-

dix C.

As with Landahl's work, variations in the solution with B and w were relatively un-dra-
matic. Therefore, at 8=0.1 and w=2.0, a wide range of t € values was studied. Surpri-
singly, the effect of non-equilibrium on the solutions was relatively minor. At a 1 € of 1.0,
various Emag values and ¢ spatial distributions were also studied. As long as a spatially
non-uniform € of the general form shown previously was utilized, unstable wave modes

were observed. The typical results presented here in Fig. 6 indicate that, with appropriate

small-scale process modeling, linear instability (indicated by Ksci/u r < 0) of even
the constant pressure mean turbulent flow velocity profile Is possible. Additional results

are presented in Appendix C.
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o

Inclusion of non-paraliei effects anc (spatially and/or temporally) variable freestream
velocity effects are included utilizing conventional multiple-scale perturbation techni-
ques. Ncte that both spatial and temporal pressure variations are represented by the
temporally coherent element of the decomposition for convenience. In addition, these
effects and this procedure is identical to that carried out for the evaluation of weakly
non-linear terms in the large-scale structure solution itself, in the absence of temporally
ccherent effects. In each of these cases an amplitude evclution equation which envelopes

the osciliation is derived and found to be identical in form to that of the generalized

shear layer bulge evolution and angular structure equations previously studied.
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Results and Conclusions

As a result of this research carried out unger contract to AFOSR/NA, the following

discoveries may be enumerated:

e In non-steady turbulent shear flows, one of the dominant advection velocities
transitions from ‘super' to 'sub’, relative to the local freestream velocity, at
a value of the shape factor (H) equal to 2. At this point the freestream is
able tc feed-forward information regarding the disturbance and catastrophic
growth leading to separation occurs.

® The velocity vector angle structure of turbulent shear flows appears to be a
useful variable for interpreting coherent structure data, predicting its evolu-
tion and formulating turbulent transport models.

e If adequate models of the apparent stresses in constant pressure turbulent

boundary layers are employed, linearly unstable modes arise. Extension to
spatially- and/or temporally-variable pressure fieids is straightforward.

Basec on these accomplishments, it is concluded that further work is warranted relative to:

® An experimental and detailed numerical study to corroborate the observed
criticality of H = 2.

e Fully three-dimensional numerical simulations and experimental investiga-
tions of, for example, free shear layers in terms of their angular structure,
relative to both coherent structure interpretation and modeling.

e The solution of a full initial value problem utilizing the weakly non-linear
wave-guide simulations of large-scale structure.

The final result and conclusion of this effort is that it motivated an SBIR study on

hypersonic turbulence for AFOSR, the fruits of which now support and advanced R&D
project at Eglin AFB.
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Turbulent Boundary Layers
with Vectored Mass Transfer

Gustave J. Hokenson*
The Hokenson Company, Los Angeles, California

HE excellent data presented in Ref. 1 provide substan-

tial guidance in the understanding of many of the
subtieties of turbulent boundary-layer (TBL) flows with
blowing, and the modeling thereof. In an effort to peel away
quantitatively the various interacting elements of the flow, it
is proposed that the foliowing approach may be useful for
exploiting such data in model development. If the Reynolds-
averaged equations of motion are further locally spatially
averaged in horizontal planes, with a scale large relative to

tra (Reynoids stress-like) terms due to the spatial variations.
(Note that a piecewise constant filter function is wsed such
Leonard terms sppear.) in addition, the average
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outer flow, which is readily characterizable from even linear
theory,? from an inner flow where the (u*v°) decay results
from the discrete jet mixing and streamwise deflection.
Given some relationship between (4),, (u°c*y., (u'v ).,
and the wall structure (where * denotes turbulent fluctuations
and w wall conditions), the inner layer typified by high
shear, relatively low speed flow may also be characterizabie.?

In a constant pressure integral formulation (which may be
most convenient for data analysis), the aforementioned
phenomena may be expressed:

a4 _ - <|i)..) (), (u's"), (u'v), 4’g,_ @
dx u, u,

7 7
u? u? 2

where 8 is the momenwum thickness, C, the skin friction
coefficient, u, the freestream velocity, and the additional
terms correspond to the three effects discussed here, (1°%),,
having been deleted. The modeling problem that the data in
Ref. 1 should significantly impact is twofold:

1) <a),, <a*¢*),, and (u’v’), all depend on the details
of the flow through the particular wall. Although <), and
(u'v’), may be estimated from the data, (i°°), must be
treated parametrically until a compatible solution is
obtained.

2) As in all TBL modeling, C, depends explicitly on all
other effects on the right-hand side of the equation.

Therefore, some effort is required to assess which effects
are important and their quantitative contribution in a general
case.

Due to the relatively low blowing rates used in Ref. 1
(relative to that which would cause separation), both the vec-
toning effect (4),, and the explicit dependence of C; on the
mass transier may be ignored in this particular case. The
resulting error of a few percent is well within the precision of
the data. This allows us to focus on the representation of the
terms

=LA 0"y Ui =u v’y Jul 3)

which are herein combined into the following single model-
ing expression

C, +C,»? 4)
1S5 v

» — — Titonium Wol
€,2-002, C¢-800 |

t.35\ s ——Sintered Wt 4
C,2-0022, C2-500

ST sk \ -
Y
U. 0y .
095+ 4
- <

075 - - e A
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bAcy2)”?|,

Fig. | Comperisen between the experimontal date of Ref. | and the
modeting of Eq. (3) by Eq. (6).
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where
bm(v), /u, ()]

By systematically varving the constants C, and C,, the
data may be fit reasonably weil with C, =0.002 and
C. = -80.0 for the titanium wall, whereas C, = - 0.0022 and
C. = -50.0 are indicated for the sintered wall. as shown in
Fig. 1. Clearly, C, scales with C, and C, scales with C; *,
implying that the friction velocity is the appropriate
reference. Note that, since the coefficients are negative, it is
evident that the effect of -(4°¢°), is dominant since we
expect —(u’'v’), to be positive.

If this functional dependence persists, analvsis suggests
that a rise in the measured C; is possible, over a range of
larger b values than used in Ref. !, prior to a falloff at stili
higher mass transfer rates. it also should be mentioned that,
in measurements of forces on such a porous plate. the drag
would reflect only the solid surface portion of the C, in this
form of the boundary-layer equations. However, the
measured force would include a pressure difference within
the passages of the porous wall due to the m(u), vectoring
(seen in the boundary-layer equation), which also involves
the contribution to C, averaging from the open surface.

For cases in which the induced mass transfer vectoring,
and (u),, is significant, angle («)/magnitude /m) variables
may be appropriate. Utilizing the following definitions of a,
m:

as{),/{u), ()
ma(l+of)* u)y,’u, M

the vectored blowing term in the boundary-layer equation
becomes

[m* -mfl+a?)*} [ -a/(l +a)] 8)

The magnitude m responds to the pressure difference across
the porous surface and its **loss coeflficient,'' whereas a pro-
vides a sensitive measure of the induced vectoring, which
also depends on the flow within the porous wall through
4*0®), and (u’'v'),. The mass transfer term in this form
exhibits extrema with which the effect of vectoring may be
evaluated. For a given a, this term exhibits an extremum
when (d),’u,='1 and, for a given m, when (&), /u, =
(1x(1+8m*)*)/4= —m?, Y1 +m?, Since (d), will be >0
yet «':, the effect of naturally induced vectoring could be
relatively small. The effect of actively imposed optimal mass
transfer vectoring is currently being studied for both steady
and unsteady flows and will be the subject of a future paper.

Acknowledgment

This work was carried out under the sponsorship of the
Aerospace Sciences Directorate, AFOSR and the Office of
Basic Energy Sciences, Department of Energy.

References

iCollier, F. S. Jr. and Schetz, J. A.. “‘Injection into a Turbulent
Boundary Layer Through Different Porous Surfaces.'” 4744 Jour-
nal, Vol. 22, June 1984, pp. 839-891.

2Hokenson, G. J., *‘Linearized k-« Analysis of Free Turbulent
Mixing in Streamwise Pressure Gradients with Experimental
Verification,"* Journal of Applied Mechanics, Vol. 46, No. 3, Sept.
1979, pp. 493-498.

"Hokenson, G. J., “Boundary Conditions for Flow Over
Permeable Surfaces,”* Journal of Fluids Engineering, Vol. 107, No.
3, Sept. 1985, pp. 430-432,




SRR e

Reprinted from September 1985, Vol. 107, Journal of Fluids Engineering

430/ vol. 107, SEPTEMBER 1985

Boundary Conditions for Flow Over Permeabie
Surfaces
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G. J. Hokenson'!

Introduction

The subject of this work is viscous flow adjacent to a
permeable surface and the boundary conditions appropriate
thereto [1]. Our objective is to generalize and extend the
analysis in references {2 and 3) from first principles in order to
clarify the relationship between the experimental reality of a
distribution of discrete nonuniform jets in a crossflow and
computations which employ continuous (locally uniform)
normal velocity and zero slip boundary conditions. The
hypothesis is that some details of the (vortical) flow passing
through the boundary and the external (partially slipping [1))
flow along the boundary affect the qualitative structure of the
solution.

The analysis presented here is an extension of the work
described in referente [4) and is directed at continuum flow
phenomena. Although, for most problems of practical im-
portance, we are generally interested in turbulent flow, a
laminar flow is considered here to expose the particulars of
the premise. Some of the results, therefore, bear directly on
current interest in laminar flow control by suction. The role
which turbulent flow considerations play shall be discussed
subsequently. Finally, the restriction that a boundary layer
structure be maintained, forcing limitations on the mass
transfer magnitude, shall not be invoked.

Background

Consider first the detailed picture of a porous wall as a
distribution of discrete jets. (The case of blowing will be used
for purposes of discussion.) By placing a ‘‘jump-type”
control volume at the exit piane of an individual jet, the
results of reference [4) indicate that the external flow *‘slips”
over the jet (i.e., the mass transfer vector tilts) with a velocity
determined by:

8(puv) = 87, ¢))

where & signifies the jump in values of the variables across the
control volume. Conventional notation assigns p, 4, v, and ¢
to the fluid density, streamwise velocity, normal velocity and
shear stress, respectively. Invoking continuity:

§(pv)=0, @

TChisf Scietist, The Hobemson Comgpuny, Les Angales, Colif., Mem.
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across the control volume allows us to write equation (1) as:
Su=24r/pv.

3

This result shall now be generalized to an arbitrarily per-
meable surface for comparison to the aforementioned zero
slip, (locally) constant normal velocity boundary condition
theoretical formulation. For cases in which v and 7 within the
boundary are zero, equation (3) is compatible with the results
in (i-3].

Developmeni

Consider the flow along a porous surface composed of a
disiribution of openings which is specified statistically in
terms of size and location. The external flow is assumed to be
two-dimensional, however, extension of the results to include
three-dimensional effects is straightforward and will be noted.
A local averaging process is now invoked [3] in planes parallel
to the boundary.? The spatial scales of the averaging are large
relative to the porosity yet small relative to the streamwise
(and span-wise) variations in the mean flow. Each of the
variables is decomposed into its local spatial mean plus a
perturbation (e.g., ¥ = {u) + u°®). When this decomposition
is applied to the Navier-Stokes equations for constant density
flow, the resulting equations may be spatially-averaged to
provide the result:

(u) +<v>, =0

(), + () + ((udv)) , =

=P /o= U ) —(UOV°), + (W),
(), + (U e))  + (()°), =

2

—(P),V/P‘(Uo )y'(uovo)‘—"(u)(:lxv (6)
where subscripts denote differentiation and subscripts in
parentheses denote a vector component.’ Not surprisingly,
this is reminiscent of Reynolds decomposition for turbulent
flow. Additional terms required for three-dimensional mean
flows are apparent. If we now apply the jump-type control

volume to the permeable boundary over the averaging
domain, the resuits analogous to reference {4] are:

&(v) =0
(WHdu) = = 5’ v°) + véw)
20
(4= ~8py/p—8r).

@

&)

)
8)

&)

In this representation, total mass flow through the per-
meable boundary and shear force on it are locally equivalent
(over the averaging area) between the discrete and continuous
representations. The average mass flux is reduced from that in
the discrete jets by the ratio of open to total surface area. The
average shear stress is reduced from that on the solid in-
terstices by the ratio of solid surface area (o total surface area.
Some new features appear, however. Most importantly the
average streamwise velocity at the boundary is nonzero and
related to that in the boundary (allowing for the possibility of
obliquely-oriented jets) by equation (8). The subtieties of such
a situation (whether due to geometrical or flow-induced

obliquity) regarding effects of internal normal stresses versus -

surface shear stresses and interpretation of experiment-theory
comparisons with the appropriate boundary conditions is

© Note that the averaging weighting function was chosen to be a constant over
the averaging domain and zero outside of it. In this manner Reynolds averaging
rules are retained and the so-called Leonard terms do not appear.

3 This formulation also significantly clarifies the effect of mass transfer on
the wall verticity flux. [f (u) is nonzero (due to active vectoring or naturally
with nominally normal injection), (w) ., responds to the four advective cerms
in equalion (S) even in constant pressure flows. If (w) is aiso nonsteady, the
{u), 1erm also modilies the vorticity flux at the wall.
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clarified by equation (8). This relationship also embodies
information on the injected flow vorticity and structure,

Applying the same decomposition, averaging and jump-
tvpe boundary control volume analysis to the full equationas in
vorticity variables results in:

(WIKW) oy = =8P ) =W )
+vb(«,,,., and (o
(&, v =8(u%0 ), an

which provides often-needed information on flow curvature
at the wall.

Discussion

Therefore, we have established a relationship between the
discrete distribution of jets in experiments and the continuous
mass flux/shear stress distributions in computational
predictions, as long as (u) =0 at the boundary. If («) is set
equal (o zero at the boundary, calibration of some aspects of
the theoretical formulation with experimental data must
compensate for the approximation. It may be that the
magnitude of the slip is small. inherently or due to term
cancellation in equation (8). However, the structure of the
injected flow does now enter the problem. Possibly. the
appropriate slip velocity (guided by equation (1)) may be
obtained empirically by judicious iteration between ob-
servation and theory.

However, the formulation suggests several more systematic
approaches. First, since jet structures may be reasonabiy
parameterized, the situation is much simpler than turbulence
in representing the nonlinear terms. Therefore, a quantitative
assessment of the effect of differences in detailed structure
between porous boundaries which are equivalent in the mean
is possible. Secondly, it suggests that applying computational
boundary conditions at some height off the wall for which
(4°v®) = 0, analogous to the flow over a wall film, may be
more appropriate.

Consider these two uses of equation (8). Across the
boundary, 5{u) may be computed if we know something of
the injected flow structure. It is clear that, over the openings
u?® and ¢ > 0 and over the solid portion «° and ¢° < 0.
Therefore, (u®v°) is a positive number. Given {v), (u) at the
wall may be computed (as a function of (w) at the wall, as
required computationally) by specifying typical detailed
distributions of «° and v° of interest within the porous
boundary, computing their jump across the boundary ac-
cording to equation (1) and then averaging. The procedure is
necessarily iterative, requiring an initial guess of the slip
velocity.

Furthermore, assuming that the height above the boundary
at which (4%%) = 0 is small, the jump expressions may be
applied (to some lesser degree of accuracy) between it and the
wall boundary. Note that the jump across the boundary must
first be computed. In this manner the equations are used to
provide the boundary conditions ((v) and (u)) for com-
putations at that level where the discrete jets have mixed out.
This is reminiscent of using wall functions and, indeed, some
profile hypothesis is required to do this accurately. [f explicit
account of the injected turbulence is of interest, the tur-
bulence kinetic energy and length scale at the displaced height
could be computed from model equations utilizing the jump-
type control volume analysis. This is relevant to the comment
in reference (5} in which the authors refer to blowing as
“provoking the viscous sub-layer.”” Utilizing the approach
developed here, the extent to which the injected flow structure
totally disrupts the near wall conditions may be assessed.

Consider the two-equation k-¢ model as an example only,
not necessarily proposed here as a general computational tool
for these flows. In this preliminary evaluation, we assume
that the iow Reynolds number postulates, relative to the near
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wall region of the flow over an impermeable boundary {6, 7).
are inapproprniaie here and the relevant form of the equations
is that for which molecular effccts are ignorabie. By applying
the jump conditions across the laver, 8y, in which the jets
mix out.”’ the following expressions for the turbulence
kinetic energy and isotropic dissipation ensue:

pLohk=by, + | P, -D, by, 12)
otée=0q. + | P, —D, oy, ad%

where { ! indicates the vertical spatial average across the &y
laver and the diffusive fluxes (g), production (P) and
dissipauion (D) are:

q. =tu./0,)0k!dy,
Po=u(auwa) | P, le=C,x P, 1k
D.:( ’ D,/‘=CIXD§/k

Utilizing expressions or values for u, (C,pk%/¢), 0, 0,.C;.
and C-. the magnitudes of & and ¢ at §y may be computed in
terms of & and ¢ injected through the boundary and the near
wall profiles. Therefore. the formalism by which the external
flow responds to the strucutre of the injected flow, which was
observed earlier for nonturbulent vortical details, carries over
to turbulence as well.

Note that, for flows with streamwise pressure gradients.
injection of matenial which undergoes a phase change at the
boundary complicates the discussion of injected vortical
structure due 10 the ¥(p> x ¥(p) ! vorticity generation
effect. In addition. dilatation effects may be important if
either phase is compressible. Finally, for integral for-

and

q.=(u./0,)3e/dy
(14)

432/ Vol. 107, SEPTEMBER 1985

mulation, the standard mass transfer term 1s modified to: (1
- Uy /u,) ((rd)./u,) and (u°v®) and the Reynolds
stresses (if the flow is turbulent) at the wall are included.
Utilizing such a formulation, the effects of slip/vectoring and
the peculiarities of various walls on (#°v") may be examined
with data such as that in reference [8].
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Vorticity with Variable Viscosity

Gustave J. Hokenson®
The Hokenson Company, Los Angeles, California

HE formulations developed in Ref. ! are eminently
useful in the analysis of vorticity mechanics in complex
flows. As noted therein, the focus of the study was not
viscous compressible flow. However, some of the equations
retain the viscosity inside various derivatives, implying that
all the variable viscosity effects are accounted for. a1 least
formally. The purpose of this Note is t0 document some ef-
fects of the additional terms required to complete the for-
mulation when variable viscosity flow is the subject of
interest.
Following the notation in Ref. 2, the equations of motion
may be written in the following form:

o, -2 ."_{ - }
#Du, /D =0k = 5 * o, 3 \% T“') m
where e, is the symmetric part of the deformation

i/ /
e, ”';“' =) @

Ame, and 8, is the Kronecker delta. Density, vorticity,
velocity, normal stress, body force, and the coefficiem of
viscosity are assigned their traditional nomenciature.
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Straightforward differentiation of the viscous terms in Eq.
(1) allows them to be written

34/9 e, du/ox, — Adu/dx,
“(vzu" A/ x,) . (e,du/0x, — 3du/dx.) o
3 3
In addition, the appropriate vector calculus identity allows
this expression to be rewriiten as

4 udd ( du Adp )
-9 —_——— e 4
)+ 3 dx *2 "'ax, ax, @

In order to derive the vorticity transport equation, this ex-
pression is substituted into the equations of motion, each
term is divided by density o, and the entire expression is sub-
jected to the curl operator. Comparing this with Eq. (1) in
Ref. 1, it is clear that the additional vaniable viscosity terms

9 (e,0u/dx, — Adu/dx;)
]

must be addressed for general viscous flows.

The focus of interest in this study is the effect of the first
term in flows for which the approximation p=coastant,
A=0is a good one, yet u must be allowed to vary. In addi-
tion to various laminar flows, this situation is applicabie to
turbulence modeling as well, in which u is related to the local
flowfield propertics. We consider, therefore, the following
term in the general vorticity transport balance:

27 (ee)
(.7 v x\e ax, ©

For cases of interest in which u varies predominantly in one
direction, herein x,, the components of the curl in the three
orthogonal directions are

3 (e;;&u) d (enau). x
ax, \ ax, o, \ ax, /!

9 (fnal‘) 9 elzal‘)
—_— - —J X

v %)

ax, \ ax, axy \ dx,
3 [e,d 9 [e.d
2(e2)-2(22) s o
ax, \ ax, ax, \ ax,

if x,, x;. and x, are associated with the streamwise, normal.
and spanwise coordinates of a shear flow, it is clear that ex-
plicit three-dimensionality is required to impact streamwise
vorticity from variable viscosity terms. However, in two-
dimensional flow, the spanwise vorticity is affected by the
component of the curl in x,:

a‘l (aeu afu Bzu
Sl it Yl I LY 8
v, \Ix, 9x, g ®

which may be written

Iu ( d w iu
— — e } - P ()
ax, \ox, 2 g ®

If, in addition, u, €wu,, this expression further reduces to
one-haif of

3‘4( 3 Jdu, _Ozu o,
Gx; Ox, axz Oxi ax: (lo)
or

aﬂ y“| O‘p a‘h

e = e e 1
ax, Ix§ axd ax; an

VOL. 24,NO. 6

If, for example, u exhibits some empirical dependence on,
say, du, /dx,, the vorticity generation will respond to a term
proportional to

a:“ al‘ )2 -+
“W (-ax—: (12)

which, clearly, can undergo several sign changes across a
shear flow and contribute positive or negative terms to the
vorticity balance. The accurate representation of variable
viscosity effects is, therefore, critical in representing the
detailed vortical mechanics.
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Thrust Vector Control Utilizing
Asymmetric Jet Nozzles

Gustave J. Hokenson®
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ECENTLY interest in thrust vector control with rigidly

mounted thrusters has been revived. The results described
in this Note are associated with the side-force generated by a
supersonic jet with an exit plane which 1s oblique to the
centeriine of the exhaust flow. As shown in Fig. |, depending
on whether the flow is over- or under-expanded, the direction
of the exhaust flow is deflected either toward or away from the
normal to the exit plane by an amount related to the pressure
imbalance and the projected area of the exit plane in the
lateral direction.! Therefore, control over the direction and
amount of side-force is available by varying the stagnation
pressure and exit plane obliquity.

Although the present resulis are associated with a two-
dimensional configuration, with the exit plane obliquity
established by extending one wall of the nozzle, application to
an axisymmetric configuration is conceivable. For example,
consider a fixed axisymmetric thruster enclosed by a cylin-
drical housing which is split longitudinally into various sec-
tions (see Fig. 1). At the null position, the end of the cylinder
coincides with the exit plane of the thruster. As various com-
binations of cylindrical sections are translated forward of the
exit plane, the radially projected area of the exit plane may be
oriented toward any azimuthal angle. The amount of pro-
jected area and its orientation may also be changed rapidly,
which adds another control feature to the thrust vectoring.

The focus of the work described in Ref. 2 involved the ex-
temt to which viscous effects affected the performance, par-
ticularly at over-expanded conditions. A two-dimensional
supersonic jet of aspect ratio (height/width) equal to 1.5 was
established over the Mach number range 1.0 10 3.0. One wall
of the nozzle contour was then extended a specified fraction of
the nozzle height to establish an oblique exit plane.
Transparent and paraliel lateral sidewalls bounded the nozzle
and extensions thereof through which the flow angle could be
observed. The side force generated was measured with a strain
gage balance to an accuracy of £2% of the reading, based on
the scatter in repeated experiments and comparison to the
measured flow angle.

In order to assess the degree to which viscous effects impede
accurate analytical prediction, the amount of asymmetry was
limited to maintain the wall extension within the domain
established by the Mach wave originating from the opposite
nozzle wall at the exit plane.

Figures 2-4 depict the forces measured on three nozzles
whose exit plane is offset by an amount 1.0, 4/3, and 5/3
times the jet height, respectively. Comparison with predictions
of two-dimensional inviscid flow theory is shown also. These
results may be converted into force coefficients by dividing the
results by the surface area of the wali extension and the exit
dynamic pressure. The corresponding plot of the Fig. 3 data is
presented in Fig. 5. These results indicate that, even in the sim-
ple case established here, nontrivial deviations between in-
viscid flow theory and experiment are observed, although the
general trends predicted by analysis are correct. It is also clear
that the vectoring control may extend well into the over.
expanded region before the nozzle boundary layers begin 0

MS‘M 16, 1983; revision received Nov. 18, 1983. Copyright
QWMMMMM Inc., 1996,
AD rights ressrved.
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separate and the entire flow degrades, although the Reynoids
number dependence of the effect in this configuration remains
to be quantified. On the basis of these data, it is concluded
that control of the thruster plenum pressure and exit plane
obliquity (including the aforementioned axisymmetric case
wherein the sideforce vector may be oriented azimuthally) pro-
vides the ability to quickly orient the thrust vector of nongim-
balled jets.
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he angular structure of viscous incompressible flow

Part I. Analysis

Gustave J. Hokenson, Chief Scientist
The Hokenson Company
Los Angeles, CA 90005

Abstract

The ooverning equations for time-dependent three-dimensional viscous shear flows are
transformed into velocity vector angle and magnitude variables to expose the flow angle
structure in various limiting situations. For purposes of analysis when the mean stream-
wise flow is reascnably well characterizable, this formulation admits the possibility for
extracting essential flowfield peculiarities and providing insight into various complex
interactions, including those associated with turbulent flow. For full numerical simulations
of shear flows, the formulation simplifies the mathematical structure and may allow for

more effective computation.
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P
. Introduction
P
The use of velocity vector magnitude and angle variables in the solution of inviscid
. . . . L. 1,2
compressibie and incompressible flows has a long history of successful application.”’
“ Less common is the implementation of such an approach in viscous shear flows, which is

the subject of this study. Part I of the work involves an exposition of the general formu-
lation and its application in various limiting cases. In a future paper, the results of a

computational study, which has been initiated, shall be presented.

Consider the time-dependent three-dimensional continuity and Navier-Stokes equations

for a constant density Newtonian fluid3:

u + Vv +w_ =20 , (1)




m
®
® and v is the constant kinematic viscosity, V¢ the conventional Laplacian operator and p
is defined as the mean normal stress (herein equated to the equilibrium thermodynamic
pressure) divided by density. Following conventional terminology u,x; v,y; w,z correspond
® to the nominal streamwise, normal (along which the dominant velocity gradients occur),
and spanwise velocities and coordinates, respectively.
® The following dependent variables are now introduced in an attempt to expose the angu-
lar structure of various shear flows:
|
|
PY m =z (u? + v? +W’)/uzr)
e = v/u (4)
L J
o = wW/u R
@ where Yr) is an appropriate reference velocity. In general, we do not expect this trans-
formation to be useful when the streamline lies in the (y-z) plane orthogonal to the
nominal streamwise (x) directior. That is, when u=0 but v,w # 0 we may have to retreat
® from this formulation, locally.
Clearly, m may be expressed as:
[~
m = (U/U(r))z (1 + 02 + a?) . (5)
h For convenience in transforming the equations, several of these terms are grouped
together such that u may be written:
®
.Ba-

L—_



u? = mR 3 R™Y = (1 + @2 + az)/qu) . (6)

Utilizing these definitions and relationships for m, © and a, Egs. (3) become:

(me)t e (M), o+ (mBO) v+ (mEa), = F (7)
(mrte), + (mae), + (mgo?) + (mBad), = G (8)
(m)¥a), + (mBo), + (mgad) + (MBa?), = H (%)

By expanding the differentiation in Eqgs. 8 and 9 and utilizing Eq. 7, the following com-

pact, yet complete, relationships for ¢ and a ensue:

N3t e = (G- 6F)/u (10)
Ny, @ = (H - aF)/u , (11)

where:
N3t z 3/3t -~ u (3/3x + ©3/3y + ad/d3z) . (12)

Note that Eqgs. 10 and 11 may be combined to express the sum and difference of the two

flow angles in the following form:

Ny, (0t a) = {(G2H) - F(0 2 a)}su . (13)
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Clearly, continuity and the magnitude, m, momentum egustion must be considered in
order to provide a closed set of equations for u,v,w and p. They shall, indeed, be add-
ressed iater in this analysis but the focus of the work in Part I is to expose the structure
of o and & for various cases in which u can be characterized parametrically. This approach
embodies the dynamics of interest in lieu of the simple kinematics derivable from contir-

vity if sufficient infcrmation on the streamwise and cross-stream derivatives is given.

Prior to addressing various specific cases, the form of the governing eguations encourages
us to examine the loci where u = 0. As long as the flow remains incompressible, this
mathematical structure is complete and €, o and their derivatives are everywhere bounded
within the previously-stated restriction of streamlines from the y-z plane. (It has been
found that several important cases of interest satisfy this restriction when analyzed in
detail but do not in traditional formulations. An example iIs a boundary layer with wall
mass transfer. Clearly, at the wall v # 0 but u is traditionally set equal to zero. It is now
known that u at the wal! is small but finitg ’?) Therefore, when u = 0, Ny, = 3/3t, & = G/F
and o = H/F with the values of (G - OF)/u and (H - oF )/u determined from L'Hospital's
rule. If, in addition, u = uy = 0, as occurs at the point of separation in a wall-bounded
shear flow, G - OF and H - aF values are stationary at that point (still possibly zero)

and the values of (G - OF)/u and (H - oF )/u are determined from the curvatures of G - OF
and H - oF . For various cases G - ©F and H - oF may be either maxima or minima and,
therefore, 3a/3t and 30/3t may be positive or negative. Subsequently, we shall analyze

specific steady flows which modify this argument somewhat.
L. Discussion

we now consider some restricted cases of the governing equations in more detail.
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A, Steady Twe - Dimensicnal Flow

In tnis situation, a = H = 0 and the governing © equation becomes:
O, + 6 = (G - OF)/u? , (14)
or, in streamfunction (¢, x) variables:
e, = (G - 6F)/u? . (15)

within the same constraints as before (0 # = by restriction and ex, ey # « by assumption
of physicality), when u = 0, @ = G/F but also, G - oF is stationary at zero. If, in addition,
uy = 0, G - OF and its first three derivatives must be zero. This is clearly a significantly

strengthened constraint from its unsteady flow counterpart.

utilizing the definitions of F and G along with the angie/magnitude transformation, the

@ equation may be written:
(1 - 2vme)tmere, (6 - 2vme)l/mere, = (-p, + ep)/me 4 vrresme)d 16)
In order to isolate certain cases of interest, it is convenient to non-dimensionalize this

eqguation with length scales L(x) and L(y), angle scale e(r) and the previous velocity scale

Yry: Utilizing the following definitions:

-B7-




Y E Rt

®(x) = 2u /u?

¢(y) = 2uy/u2 (17)
Re = U(r)L(x)/v

€ = Re™! ,

the governing © equation in dimensionless variables becomes:

€0, *+ 0,/ A% /u . (18)

In order to retain the two-dimensional equation of continuity in its primitive form, A is

set equal to O(r) so that the © equation may be written:
- A . 2 - - 2 2
(1 €¢(x))ox + (0 s¢(y)/l )Gy = (op, py/x Y/u? o+ e(@xx + ny/

A2)/u . (19)

we now consider various cases of interest for which € << 1 . The most straightforward
limit is A >> 1 for which the first order solution for © (in an implied perturbation expan-

sion) may be developed by letting A - = in Eq. 19, resulting in:

- 2
Gx + OGy = Opxlu + € Oxx/u ’ (20)

which can be made formally invariant with respect to ¢ by utilizing x/¢ and y/c as

independent variables.




If, on the other hand, A << 1 such that €/A% << 1, i.e. A is small relative to one but still

large relative to the presumed ve:y small ¢ , the governing © equation becomes:

o) o) - - 2 * '
x * 0 y py/u + € ny/u , (21)
where:
u' = Au , and
(22)
e' = e/X ,

are used to maintain the canonical form of Eq. 20 which is independent of A. Evidently,
the appropriate velocity in this case is a typical v. Eq. 21 also may be made invariant

with respect to € via x/¢' and y/e'.

This case is to be contrasted with the traditional boundary layer limit for which A << 1
but /A% = O(1) (i.e. Ly/Lx ~ Re") so that all the coefficients in Eq. 19 are of order unity.
If € = O(A\?), the term - ¢ (y) ey must be retained and the equation becomes:

e, + (0 - (e/2?) ®(y))0y = - P

2,,2 2
X /Au? + (e/) )eyy/u - (23)

y

For purposes of analysis, -¢(y) is treated as a small (variable viscosity - like) term which

can be incorporated as a perturbation correction to the solution of:

6, + 60, = - py/u" + cieyy/u‘ ’ (24)
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which is essentially identical to Eqg. 21, except that €' = /A = e% . Eq. 24 also may be

3 3

made invariant with respect to € by employing x/e* and y/¢* as independent variables.
The traditional use of Egs. 21 and 24 involves the formal limit » + 0 for which py = Q,
the boundary layer assumption. Note that the behavior in this limit is formally the same

as our previous analysis of u = 0.

Our use of the previous scaling is directed at simplifying the coefficients in the governing
equation while retaining all the terms such that the mathematical structure is complete.
We leave it to the solution to expose the behavior of the dependent variables when € and

A are small enough to have allowed various terms in the equation to be neglected.

Further analysis of Eq. 24 is facilitated by the use of streamfunction independent variables

(y,x) wnich allows the equation to be written:
@x = - pw/u' + ei. (U'ew)‘y . (25)

(%
If we define an equilbrium, @(eq y which is independent of x, its distribution in terms

of u' and p is:
eto = [1/u'fdp/u’ dy + C¥ + C (26)
(eq.) ~ P 1 2 !

which, if u' varies weakly with ¢ (as it must in order to account for ¢, . via perturbation
(y)

theory), reduces Eq. (26) to:
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eée‘ = (Jpdy)/ut? + Cv+C (27)

(eg.) 2

In addition, thin internal layers may exist within the shear flow for which Eq. (25) provi-

des the following 'jump' (&) condition:

fdp/sut = eéé(u'ew) ) (28)
or, for weakly varying u':
etse, - eprurt . (29)

Finally, the general solution of Eq. (25), in terms of a known or characterizable p and !
u' field, is readiiy obtained from transient heat conduction solutions to the equation

written as:
o, - eture), = - p,/u (30)
X Vv b ’
and the u' (y) variations treated perturbatively and parametrically. In addition, since the
u' (¢) variations are weak in order to treat ¢ ) via perturbations, u' may be set equal
to a constant determined by collocation in order to optimize the approximation of neg-

lecting its distribution.

If u' (0) characterizations are meaningful, Eq. 30 may be written:

] - ’ J = =
e x e‘u' 0 W = pw ’ (31)
where: u'de = de' ’
-Bll-




which, although non-linear, is particularly convenient for analysis. The 'equilibrium' solu-

ticn ang 'jump’ conditions of £q. (31) are apparent.

Analysis of the behavior of Eg. 20 is more clearly carried out computationally inasmuch
as the conventional streamfunction (y,x) transformation results in a complex elliptic
equation for €. If the less conventional (y,y) streamfunction transformation is invoked

(3/3x = - v3/3y; 3/3y = 3/3y + uUd/3V), Eq. 20 may be written in terms of ©2/2 = § :
3
Q = -
& = 2% pw/u + €(28) (US‘D)\D R (32)
in which the non-linearities limit closed form analysis. However, the equilibrium and
'‘jump' conditions may be approached as before, particularly if u (8 ) relationships (where

ugdd = g%'; are useful.

B. Steady Three - Dimensional Flow

By expanding and non-dimensionalizing Egs. 10 and 11, the following expressions for © and

a ensue as € » O:

o, + (0 - (e/xz(y))o(y))ey + (a - (e/x’(z))o(z))ez =

2 2
- (py/xz(y) - 8p /Ut e e, 4 B /ATy 4 8,00 ()N /U

yy

(33)

Clx + (0 - (a/kz(y))ﬁ?(y))ay + (a - (€/A2(z))°(z))uz =

2

y)

- (pz“z(z) - ap )/u? + ela, Oy
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where the additional scale ratio )\< 2) (= L(z)/‘“(x)) has been introduced and the characte-
ristic angle, Gpys has been set equal to A(z) in order to retain continuity in its primitive

form.
In the limit as }‘(y)’ )‘(z) + o , £gs. (33) may be written:

{2/3x + B23/3y + ad/3z - p /U’ - (e/u)d?/3x?} @,a = O . (34)
Alternatively, if My) = M2y 0 such that e/A? is still small, Egs. 33 become:

{6/3x + ©3/3y + a3/3z + pj/u" - (e'/u')(3%/3y? + 32/32%?)}0,a = O,
(35)
where j =y for € and j = z for o . In the traditional boundary layer limit this same form
is retained with e% replacing €' and the (presumed weak) variable viscosity - like ¢
terms accounted for perturbatively. Clearly, if d>(y) and 0(2) are large, they must be

included with © and a in the advective operator.

In the mixed limit case, A,_, + = and A, , + O such that e/A%, | = 1 , Egs. (33) become:
(2) (y) (y)

- - 2 i ’
N3e = py/u' + € eyy/u
- 2
Nia = ap /u® + ayy/u (36)
where: N3 z 9/9x + ©3/3y + ad/d2 ,
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and Q(y) must be accounted for at higher order. Alternatively, if A(y) + « and )‘(z) +0

such that e/)r”,z\ = 1, the Eqgs. (33) are written:

N - 2 =
NBO = Opx/u + uzz/u
(37)
N3a = - pz/u" + eéazz/u' ,

again assuming that ¢ ( is subsequently accomodated. By scrutinizing these mixed limit

z)
cases it is ciear that the essential angular structure of the flow will be markedly diffe-

rent from that we have observed previously. Consider, for example, the case where Py

0 and « is small. This results in:

O + @6 = ©__/u ’ (38)

indeed a curious mix of derivatives. Three-dimensional phenomena are most clearly inve-
stigated numerically and will be described in a future publication. Note that, unlike two-
dimensional flows, total knowledge of u is inadequate to prescribe the angular structure

from the kinematics of the incompressible continuity equation.

C. Time - Dependent Flow

By adding the dimensional terms:

Ot/u and at/u (39)

to the advective operators in Egs. (33), the three-dimensional formulation embraces

unsteady flows as well. After non-dimensionalization, these terms are scaled by a
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coefficient:
oot (+0)

] ! al £ i i /i C t C
where L(X) repiaces C(r) and ) 3 ter clearing the equations with respect to C(r)/'“'(x)
and Q(r)/L(x)-’ respectively. If t(r) is chosen as L(x)/u(r), the additional dimensionless

terms @t/u and at/u are present in all equations for which A + « .,

In cases for which ;‘(y) = A(z) + 0, it is more consistent, formally, to set t(r) = L‘(y,z)/“(r)

and express the operators as:

/ut o+ O+ . . . .. , and

(41)

For mixec limits, the o and © equations respond most naturally with different 'time con-
stants', significantly enriching the range of solution characteristics to be exposed numeri-

cally.
For the two-dimensional flow governed by Eq. (24), the unsteady counterpart is:

vy - - 2 i
Ot/L + 0, + eey = py/u' + € E)yy/u' , (42)

or, in conventional streamfunction variables:

0, + Uu'0_ = - p‘p + c’u' (u'ew)w . (43)
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If tne transformation d* = u' do allows for meaningful parameterization of the velocity

field, £q. (43} may be written:

‘e

u' $§ , (44)

/u' + 8 = - D, * ok
v Py Yy

both of which iliustrate significant changes in the boundary layer approximation p v e C.

Fer purpeses of analysis, if u' = u' (), along curves in the x - t plane for which x - u't

is a constant, Eq. 43 may be written:

0 = - Py * e*u' (U'OW)\& . (45)

Once again, the general transient structure is so complex for either two- or three-dimen-

sional flows as to require numerical investigation.
with regard to time-dependent flows, considerable interest exists relative to the angular
structure of turbulent flows. The counterpart of the Reynolds stress tensor may be found
by setting € = 0 in Egs. (33). For notational simplicity, the case )‘(y) = A(z) = o will be
used without justification. In this case, the equations for © and a become:

{utasat + 3/3x + ©3/3y + ad/3z - p,/u*} @,6 = O . (46)

Since the continuity equation may be written:

u, ¢ (UG))y + (uu)z = 0 ’ (47)
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.0

Eqs. (48) become:

a, (ua)x + (u-f-)cx)y + (uaz)z = ap /u , and
(48)

0, + (ue), + (qu)y + (ual),

epx/u .

If we consider two-dimensional "turbulence” in order to expose the angular Reynolds
stresses, £q. 48 may be written utilizing traditional Reynolds decomposition as:
2

éx + §5y = BP/u° - B(P'U" « (u'e')y)/ﬁ - u'e'(zéy + P)/u -08'P,

(49)
where P = p, and triple correlations of the fluctuations (designated by the prime) and
the x - derivative of U'0' have been neglected. In addition, the ensembie mean values
(designated by the overbar) have been assumed to be time - independent. The term (u'_e')y
is reminiscent of the conventional Reynolds shear stress. However, this formulation expo-
ses additional explicit effects of P, © and & y and correlations between P!, u' and 0'. It
remains to be seen whether or not the explicit appearance of these various terms is

sufficiently advantageous in light of the additional superficial complication.

with regard to the turbulent burst dynamics, various aspects of the vortical instabilities
are often described in terms of a four quadrant u* - v' map. 6 Equations for ©' and its
statistical characterization may also be derived from the full 8 and & relationships, provi-
ding an analytical tool with which to quantify the various details which support the afore-

mentioned four quadrant uniquenesses of turbulent burst dynamics.

-Bl7-




11l. Conclusion

The full time-dependent three-dimensicnal Navier - Stokes equations for incompressible
viscous shear flows have been converted to vector angle and magnitude variables for
analysis in various limiting cases. This dependent variable transformation, in conjunction
with a streamfunction independent variable is seen to simplify the system of equations
and permit analysis of the angular structure with the pressure and velocity field treated
parametrically. The utility of this formulation in the study of turbulence appears to have
merit. Finally, the equation structure is often considerably more "symmetric" in these

variables and masy facilitate numerical studies which are currently under way.
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Appendix C

TBL INSTABILITY COMPUTATION INPUTS AND RESULTS
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Figs. Cl & C2. Input Mean Velocity and Eddy Viscosity Profiles and

Their Derivatives.
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e Fig. C3 & Table C3. Alpha Solutions For The Particular Case Shown.
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BETA 0.100
OMEGA 2.000
EPSHAG 1.200
TAUEPS 0.000

RE NO. 44369.000

ALPHA REAL

-0.30270
0.13009
-0.25528
-8 .78500
0.82936
1.063%8
1.28000
1.420090
1.54000
8.52391
-1.19534
-1.74600
-0.09086
-1.3653S5

THE HOKENSON COMFPANY

-1.37840
-1.06779
-0.79761
-1.85000
-8.71168
-0.58185
-0.46000
-0 .36000
-0.34000
-0.89511
-2.40390
-2.70400
8.64849
1.53441

Table C3

ALPHA IHAGINARY
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K

4.55368
-8.20811
3.12447
2.35669
-0.8%8611
-8.54711
-8.35938
-8.25352
-0.22078
-1.70851
2.01106
1.54868
-7.13706
-1.12382

PHASE SPEED

-6.60720
15.37404
-7.83455
-2.54777
2.41150
1.88058
1.56250
1.40845
1.29870
3.81744
-1.67316
-1.14548

-22.01140

-1.46483




<] Figs. C4 - Cl10. Eigenfunctions For The Solution: a = .13 and a = - 1.07 On Fig. C3.
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Figs. & Tables Cl1 - C13. Alpha Solutions For The Particular Cases Shown

with Conditions Identical to Fig. C3 Except Te is Non-Zero.
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Table Cil
L
BETA o.100
OHEGA 2.000
EPSHAG 1.000
TAUEPS 1.000
RE NO. 44369.000
ALPHA REAL ALPHA INAGINARY K PHASE SPEED
0.04822 -0.61343 -12.72114 41.475380
-8 .73597 -1.69037 2.29678 -2.71748
-1.19810 -2.12207 1.7712@ -1.66932
@.38616 -1.16745 -3.82318 $.17913
2.00584 -1.38015 -236.44127 342.63199
-0.44789 -1.51448 3.38136 -4 ,46537
@.68070 -0.96358 -1.415%86 2.93813
2.68239 -8.44285 -0.64897 2.93086
8.90013 ~-9.81632 -0 .90690 2.22190
1.11133 -8.71862 -8.64663 1.79965
1.18127 -9.00043 -0.80036 1.69310
1.27817 -0.59046 -2.461906 1.56473
1.38630 -9 .50984 -0.368777 1.44268
-0.34523 0.30375 -0 .87984 -5.79327
-9.48100 ©.70200 -1.45946 -4.15800
-2 .95000 2.20000 -2.31579 -2.18526
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Table Cl12

-0.46000
-1.32000
-1.20000
-1.12008
-90.930080
-0 .78800
-9.68000
-0.60000
-0.20000
2.35657
e.ee801
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K

-4.60000
7.33333

-12.00000

-1.931€3
-1.03333
-0.68421
-8.51515
-0.39474
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Table Ci3

-0.44000
-1.72000
-2.16000
-1.10000
-0.90000
-8 .76000
-0.200080
-0.66000
~1.18000
-1.30000
2.40235
-0.080050
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K

-7.33333
2.68750
1.71429

-1.83333

-@.90000

-8.63333

-0.16667

-0.48529

-8.42857

10.83333

-2.15796
0.14286

PHASE SPEED

33.33334
-3.12500
-1.58730
3.33333
2.00000
1.66667
1.66667
1.47058
14.28571

-16.66667

-1.79654

-571.42853




Figs. Cla a & b and Table Cl4. A Modified Input Eddy Viscosity Profile with The
Peak Located Twice As Far From The Wall As In Previous Solutions. Alpha

Solutions For The Particular Case Shown.
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-8.16600
-0.00400
-0.03200
8.59344
2.26225

Tabhle Cla

ALPHA IHNAGINARY
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K

2.062580
3.45833
6.74747
2.75758
-7.83183
-2.22187
-1.34656
-0.92937
-0.69247
-8.46892
-0.33086
-2.11698
-0.00337
0.10063
-2.93289
-2.29437

PHASE SPEED

-2.03252
-4.16667

-10.10101
-10.10101

11.49425
3.88350
2.64550
2.03252
1.72043
1.48335
2.25225
1.61551
1.40944
1.68482

-6.28931
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